Abstract

The aim of this study was to compare the kinematic pattern and the segmental movement co-ordination when the trunk segment was constrained in different positions during plyometric rebound jumps. Nine skilled volleyball players, experienced in plyometric training, were asked to perform a random series of maximal rebound jumps, using three different seat arrangements (90°, 135°, and 180°) in a pendulum swing device. From two-dimensional filming, performed in a right sagittal plane at 200 Hz, it was possible to calculate ankle, knee, and hip displacements; velocities; and muscle-tendon lengths. The subjects showed similar ankle and knee angles between experimental conditions. The hip joint angle differed significantly between conditions. Only the muscle-tendon lengths of the biarticular muscles spanning the knee/hip were affected by the seat arrangement variations. Significantly greater knee angular velocities were observed in the upright sitting posture (90°). The hip was consistently the first joint to extend. The ankle and knee joint reversals were not invariant, regardless of the seat arrangement. The movement co-ordination strategy did not differ across postural variations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.