Abstract

Previous studies have shown that the application of a porous coating to a solid substrate offers several advantages over current methods of implant fixation. However, the heat treatments required to sinter porous metal coatings have also been shown to cause significant decreases in the mechanical properties of the substrate. With Ti-6A1-4V alloy, sintering above the material beta transus results in a transformation from the as-received, equiaxed microstructure, recommended for surgical implants, to a lamellar alpha-beta microstructure. This lamellar structure has been shown to have inferior mechanical properties. In the present study, microstructural analysis and mechanical testing were performed on Ti-6A1-4V alloy subjected to various post-sintering heat treatments in an attempt to improve the mechanical properties. The microstructures examined were a fine and a coarse acicular alpha in a retained beta matrix. Tensile tests were performed on specimens containing these structures and results were compared with the lamellar and equiaxed microstructures. The fine acicular alpha structure was shown to exhibit the best tensile properties for the post-sintering Ti-6A1-4V alloy microstructures examined, displaying a 9.8% elongation value, as compared to the as-received, equiaxed microstructure value of 13.5%. This represents a significant improvement over the 5.1% value obtained with the lamellar microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.