Abstract
Recently, the use of CZTS as the basis for other generation of low cost thin films solar cells has stimulated further researches. Its excellent p-type absorber nature, relatively high absorption coefficient and ideal energy band-gap of 1.5eV motivated these efforts. Additionally, CZTS consist of earth-abundant, cheap and non-toxic elements with very low manufacturing cost. Initially, copper indium gallium selenide (CIGS) solar cell device emerged but suffered limitations in further development because of rare indium and gallium in the device structure therefore, CZTS is recently preferred as an alternative to CIGS commercial solar cell absorber layer. In this work, solution mixture of CZTS and PVA was deposited on a substrate at temperature of 150 °C. Sensitive spray pyrolysis was used to grow the thin films where calculated amount of the precursor mixture was allowed to fall and be deposited on a heated substrate to form CZTS/PVA thin films. Subsequently, the thin film samples were annealed at a temperature of 200oCfor 1 h to achieving pure crystalline thin film formation. SEM, XRD analysis, Optical, Solid State properties and Raman analysis were studied. The XRD analysis showed that the thin films fell into the pure kesterite structure of CZTS. Results show that produced thin films exhibited higher absorption coefficient and optical conductivity than pure CZTS, 106 m−1 and 1014(S−1) against 104cm−1 and 1012(S−1) respectively. The band-gap is between 1.53eV and 1.73eV. Using a PVA concentration of 0.05 M yielded highest absorbance and optical conductivity with lowest real dielectric constant and transmittance. These improved optical, electrical and solid state properties suitably qualify these thin films as absorber layer material for solar cell applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.