Abstract

Microfluidics, a rapidly advancing field, finds wide applications in various domains, including enhanced oil recovery. This study delineates the methodology for fabricating a microchip with channels having a width of 50 μm, designed to simulate and visualize fluid flow in porous media. The microfluidic device was constructed using NOA81, a UV-curable polymer. Upon curing, it forms a robust and transparent microchip structure suitable for precise fluid control and analysis in microfluidic applications. Flood experiments conducted on the microchip revealed that the introduction of a 0.5 wt% polymer gel into the model's channels resulted in a reduction of water permeability by a factor of 106 and 25 at the shock front and after injection pressure stabilized, respectively. In contrast, oil permeability was reduced by at least 40 times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.