Abstract

One method of energy harvesting is to use piezoelectric devices, which are able to interchange electrical energy and mechanical strain or vibration. This study is to experimentally investigate the behavior of a piezoelectric energy harvester that was constructed with an array of pillar structures made of 0.2(PbMg1/3Nb2/3O3)−0.8(PbZr0.475Ti0.525O3) with polymer fill. Additionally, the aim of this study is to optimize the fill ratio of the composite piezoelectric ceramics and polymer structure. 0.2(PbMg1/3Nb2/3O3)−0.8(PbZr0.475Ti0.525O3) ceramics were employed as piezoelectric ceramic pillars, prepared in a rectangular shape. These piezoelectric ceramic pillars were sintered separately and attached to a bottom metallic electrode with poled states. The optimum ratio of ceramic pillar and elastic polymer ratio will be discussed. Piezoelectric properties will be discussed including the piezoelectric constant, piezoelectric voltage constants, and electromechanical coupling coefficient. We will present how the harvested energy depends on the lead resistor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call