Abstract

AbstractThis study investigated the effect of polylactic acid (PLA)/poly‐d‐lactide (PDLA) stereocomplex (ST) on the improvement of the mechanical and thermal properties of various rubber‐toughened PLAs. In this work, natural rubber (NR), synthetic polyisoprene rubber (IR), silicone rubber (SI), acrylic rubber (ACM), acrylic core–shell rubber (CSR), thermoplastic copolyester (TPE) and thermoplastic polyurethane (TPU) were chosen as the toughening agents. 5 wt% PDLA was melt‐blended with PLA to form ST crystals in the presence of 15 wt% rubber in an internal mixer at 180 °C and 50 rpm. It was found that the melting temperature of ST crystal (Tm,sc) and the impact strength of ST/rubber blends were strongly correlated with the rubber domain size. For the blends of ST with compatible rubbers (ACM, CSR, TPE and TPU), the rubber domain sizes tended to be smaller with higher Tm,sc and higher impact strength than the blends with incompatible rubbers (NR, IR and SI). However, the presence of ST crystals in PLA/incompatible rubber blends, especially the blends with NR and IR, led to a significant increase in the rubber domain size and plunges in tensile toughness and impact strength. On the other hand, the presence of these crystals in PLA/compatible blends did not change the rubber size or the impact strength significantly compared with those without ST crystals except in the case of ST/ACM, which resulted in a large increase in the impact strength. Among all rubber types, CSR provided the highest impact strength for both the PLA and ST systems. © 2019 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call