Abstract

This paper studies the possibility for improving the ductility of cement based materials by means of oligocationic additives. Actually, the setting of cement is due to ionic correlation forces between highly negatively charged C–S–H nanoparticles throughout a calcium rich solution. The main drawback of this strong attraction is its very short range that results in low elastic deformation of hydrated cementitious materials. A way to enlarge the attraction range between C–S–H particles would be to add cationic oligomers that would compete with calcium ions modifying the ionic correlation forces via a bridging mechanism of longer range, which could lead to a more ductile material. The studied parameters were the polymerization degree, the separation distance between the charged monomers and the balance between oligocations and monovalent and divalent cations in the solution. The results, both experimental and numerical by Monte Carlo (MC) simulations, demonstrate that cationic oligomers can compete with calcium cations as counterions to the C–S–H surface. The cohesive forces between C–S–H surfaces, calculated by MC simulations, show an interesting behaviour where range and magnitude can be tuned with oligomer concentration, polymerization degree and line charge density. Thus, it seems possible to modulate the ductility and critical strain of cement by addition of cationic oligomers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.