Abstract

Understanding sequence dependent mechanical and structural properties of collagen fibrils is important for the development of artificial biomaterials for medical and nanotechnological applications. Moreover, point mutations are behind many collagen associated diseases, including Osteogenesis Imperfecta (OI). We conducted a combination of classical and steered atomistic molecular dynamics simulations to examine the effect of point mutations on structure and mechanical properties of short collagen fibrils which include mutations of glycine to alanine, aspartic acid, cysteine, and serine or mutations of hydroxyproline to arginine, asparagine, glutamine, and lysine. We found that all mutations disrupt structure and reduce strength of the collagen fibrils, which may affect the hierarchical packing of the fibrils. The glycine mutations were more detrimental to mechanical strength of the fibrils (WT>Ala>Ser>Cys>Asp) than that of hydroxyproline (WT>Arg>Gln>Asn>Lys). The clinical outcome for glycine mutations agrees well with the trend in reduction of fibril's tensile strength predicted by our simulations. Overall, our results suggest that the reduction in mechanical properties of collagen fibrils may be used to predict the clinical outcome of mutations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call