Abstract

The impact of plasma shaping on the properties of high density H-mode scrape-off layer (SOL) profiles and transport at the outer midplane has been investigated on Tokamakà configuration variable. The experimental dataset has been acquired by evolving the upper triangularity while keeping the other parameters constant. The scan comprises δup values between 0.0 and 0.6, excluding negative triangularity scenarios. Within this study, a transition from type-I edge localised modes to the quasi-continuous exhaust regime takes place from low to high δup . The modification of the upstream SOL profiles has been assessed, in terms of separatrix quantities, within the αt turbulence control parameter theoretical framework (Eich et al 2020 Nucl. Fusion 60 056016). The target parallel heat load and the upstream near-SOL density profiles have been shown to broaden significantly for increasing αt . Correspondingly, in the far SOL a density shoulder formation is observed when moving from low to high δup . These behaviours have been correlated with an enhancement of the SOL fluctuation level, as registered by wall-mounted Langmuir probes as well as the thermal helium beam diagnostic. Specifically, both the background and the filamentary-induced fluctuating parts of the first wall ion saturation current signal are larger at higher δup , with filaments being ejected more frequently into the SOL. Comparison of two pulses at the extremes of the δup scan range, but with otherwise same input parameters, shows that the midplane neutral pressure does not change much during the H-mode phase of the discharge. This indicates that indirect effects of the change in geometry, linked to first wall recycling sources, should not play a significant role. The total core radiation increases at high δup , on account of a stronger plasma–wall interaction and resulting larger carbon impurity intake from the first wall. This is likely associated to the enhanced first wall fluctuations, as well as a smaller outer gap and the close-to-double-null magnetic topology at high shaping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.