Abstract

Amorphous Silicon-germanium films were prepared by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) on glass substrates. The structural characteristics, deposition rate, photosensitivity, and optical band gap of the silicon-germanium thin films were investigated with plasma power varying from 15W to 45W. The deposition rate increased within a certain range of plasma power. With the plasma power increasing, the photosensitivity of the thin films decreased. It is evident that varying the plasma power changes the deposition rate, photosensitivity, which was fundamentally crucial for the fabrication of a-Si/a-SiGe/a-SiGe stacked solar cells. For our deposition system, the most optimization value was 30-35W.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call