Abstract

The relationship between plant size and vegetative reproduction in clonal plants appears complex because vegetative expansion, growth, and reproduction are not clearly separable in such plants. In ‘pseudo-annuals’, which are clonal plants surviving the winter only as seeds and hibernacles produced by the rhizome apices, vegetative growth and reproduction are clearly separate processes so that the relationship between vegetative reproduction and plant size can be studied. We used the pseudo-annual Helianthus x laetiflorus Pers. to study the relationship between plant size and total rhizome biomass, rhizome (hibernacle) biomass, and number of hibernacles. We manipulated resource acquisition of the plants by reducing leaf area (leaf-clipping) and by fertilization, thus affecting plant size. Furthermore, we studied the success of thin and thick hibernacles in terms of future growth and reproduction in a separate experiment. The results showed that vegetative reproduction was positively related to plant size. The ratio between the number of hibernacles and mean hibernacle weight was affected by plant size in such a way that in small plants both number of hibernacles and mean hibernacle weight were reduced to the same extent as compared to those in large plants. However, the size distributions of plants of the next generation growing from thin and thick hibernacles did not differ. It remains unclear therefore why this pseudo-annual species produces thick hibernacles at all.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.