Abstract

AbstractIn cropping systems, the choices adopted for the tillage system used and plants cultivated can strongly influence the soil microbial population and its functional profile. Arbuscular mycorrhizal fungi are an important component of soil microbiome and their mutualistic symbiosis with the majority of higher plants grant the latter a wide range of benefits. The extraradical mycelium developed by these fungi expands the volume of soil influenced and harbours a diversity of microbes establishing a distinct environment of complementary interactions. We assessed how growing plants with different levels of mycotrophy modifies the biological activity profile in the soil under Mn toxicity and whether this is modified by soil disturbance. Following mycotrophic plants, soil contained a more active microbiome than after the non‐mycotrophic plants, as expressed by higher values of soil basal respiration or dehydrogenase activity. Additionally, the count of phosphorus solubilizes and activity of phosphatase were greater after mycotrophic plants. Even among mycotrophic plants, different profiles of biological activity can be distinguished after growing a legume or grass. ERM disruption by soil disturbance decreased most of the parameters studied and for phosphatase activity and P solubilizers in a more significant way. These results indicate that even under Mn toxicity, the microbiome associated with AMF symbiosis following mycotrophic plants growth presented a higher biological activity and had a differential biological response towards the stress imposed by soil disturbance, when compared with the microbiome associated with non‐mycotrophic roots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call