Abstract

To study the optimal plant row configuration of the multiple cropping of soybeans that are suitable for planting in southern Xinjiang, a field experiment using soybean variety SN35 was carried out employing different plant row designs. Three row spacing treatments of 15 cm (H1), 30 cm (H2), and 45 cm (H3) and three density treatments of 52.56 million (M1), 55 million (M2), and 60 million (M3) plants per hectare were set up in this experiment to explore the effects of different plant row spacing configurations on agronomic traits, photosynthetic characteristics, dry matter accumulation, and the soybean yield of the multiple cropping of soybeans. The results showed that the soybeans’ plant height, diameter, main stem node number, leaf shape index, leaf area index (LAI), leaf area duration (LAD), and pod dry matter distribution ratio increased gradually with the growth process. In contrast, the stem dry matter distribution ratio decreased gradually, and the leaf dry matter distribution ratio first increased and then decreased. The plant height of the soybeans treated with H2M3 was the highest, reaching 67.38 cm. The number of primary stem nodes of the soybeans treated with H1M3 was the highest, reaching 12.7 nodes. The stem diameter of the soybeans treated with H1M1 was the highest, reaching 0.64 cm. The leaf shape index of the soybeans treated with H3M1 was the highest, reaching 2.72. Intercellular CO2 concentration closely affects the final yield; the correlation coefficients with the pod number per plant, seed number per plant, and yield reached 0.75, 0.78, and 0.87, respectively. The theoretical maximum hundred-grain weights under the H1M1 and H2M1 treatments were higher, reaching 20.33 g and 17.98 g, respectively. The H3M3 treatment had the most significant one-hundred-grain weight, reaching 21.27 g. The soybean yield of each density treatment was M3 > M1 > M2. With the increase in row spacing, the average pod number per plant, grain number per plant, grain weight per plant, and yield of soybeans decreased gradually, and the hundred-grain weight increased gradually. The yield of the density treatment with 60 million plants per hectare under 15 cm row spacing was the highest, reaching 6155.8 kg·hm−2, followed by the density treatment with 60 million plants per hectare under 30 cm row spacing, reaching 5850.6 kg·hm−2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call