Abstract
For paramagnetic species, it has been long understood that the hyperfine interaction between the unpaired electrons and the nucleus results in a nuclear magnetic resonance (NMR) peak that is shifted by a paramagnetic shift, rather than split by the coupling, due to an averaging of the electronic magnetic moment caused by electronic relaxation that is fast in comparison to the hyperfine coupling constant. However, although this feature of paramagnetic NMR has formed the basis of all theories of the paramagnetic shift, the precise theory and mechanism of the electronic relaxation required to predict this result has never been discussed, nor has the assertion been tested. In this paper, we show that the standard semi-classical Redfield theory of relaxation fails to predict a paramagnetic shift, as does any attempt to correct for the semi-classical theory using modifications such as the inhomogeneous master equation or Levitt–di Bari thermalization. In fact, only the recently-introduced Lindbladian theory of relaxation in magnetic resonance [J. Magn. Reson., 310, 106645 (2019)] is able to correctly predict the paramagnetic shift tensor and relaxation-induced linewidth in pNMR. Furthermore, this new formalism is able to predict the NMR spectra of paramagnetic species outside the high-temperature and weak-order limits, and is therefore also applicable to dynamic nuclear polarization. The formalism is tested by simulations of five case studies, which include Fermi-contact and spin-dipolar hyperfine couplings, g-anisotropy, zero-field splitting, high and low temperatures, and fast and slow electronic relaxation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.