Abstract

Diabetic hyperglycemia results from insulin resistance of peripheral tissues and glucose overproduction due to increased gluconeogenesis (GNG). Thiazolidinediones (TZDs) improve peripheral insulin sensitivity, but the effect on the liver is less clear. The goal of this study was to examine the effect of TZDs on GNG. Twenty sulfonylurea-treated type 2 diabetic subjects were randomly assigned (double-blind study) to receive pioglitazone (PIO group; 45 mg/day) or placebo (Plc group) for 4 months to assess endogenous glucose production (EGP) (3-(3)H-glucose infusion), GNG (D2O technique), and insulin sensitivity by two-step hyperinsulinemic-euglycemic clamp (240 and 960 pmol/min per m2). Fasting plasma glucose (FPG) (10.0 +/- 0.8 to 7.7 +/- 0.7 mmol/l) and HbA1c (9.0 +/- 0.4 to 7.3 +/- 0.6%) decreased in the PIO and increased in Plc group (P < 0.05 PIO vs. Plc). Insulin sensitivity increased approximately 40% during high insulin clamp after pioglitazone (P < 0.01) and remained unchanged in the Plc group (P < 0.05 PIO vs. Plc). EGP did not change, while GNG decreased in the PIO group (9.6 +/- 0.7 to 8.7 +/- 0.6 micromol x min(-1) x kg(ffm)(-1)) and increased in the Plc group (8.0 +/- 0.5 to 9.6 +/- 0.8) (P < 0.05 PIO vs. Plc). Change in FPG correlated with change in GNG flux (r = 0.63, P < 0.003) and in insulin sensitivity (r = 0.59, P < 0.01). Plasma adiponectin increased after pioglitazone (P < 0.001) and correlated with delta FPG (r = -0.54, P < 0.03), delta GNG flux (r = -0.47, P < 0.05), and delta insulin sensitivity (r = 0.65, P < 0.005). Plasma free fatty acids decreased after pioglitazone and correlated with delta GNG flux (r = 0.54, P < 0.02). From stepwise regression analysis, the strongest determinant of change in FPG was change in GNG flux. Pioglitazone improves FPG, primarily by reducing GNG flux in type 2 diabetic subjects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.