Abstract

ABSTRA C T Using the latest non-local thermodynamic equilibrium (non-LTE) synthetic spectra and stellar model calculations, we have evaluated the potential effect of the presence of heavy elements in the photospheres of hot H-rich DA white dwarfs. In particular, we have examined their influence on the effective temperature and surface gravity perceived from analysis of the Balmer line profiles. It is apparent that both the inclusion of non-LTE effects in the models and significant quantities of heavy elements act independently to lower the value of Teff determined from a particular spectrum. Hence, the true effective temperatures of the heavy element-rich DA white dwarfs, currently estimated to be above 55 000 K, are apparently lower than previously reported from pure-H LTE analyses, by some 4000‐7000 K. We do not see any similar influence on measurements of log g. This work concentrates on a group of relatively bright well-studied objects, for which heavy element abundances are known. As a consequence of this, establishment of correct temperatures for all other hot white dwarfs will require a programme of far-UV spectroscopy in order to obtain the essential compositional information. Since only stars with effective temperatures lying notionally in the range from <55 000 to 70 000 K (52 000‐62 000 K when the non-LTE effects and heavy elements are taken into account) have been considered here, important questions remain regarding the magnitude of any similar effects in even hotter white dwarfs and pre-white dwarfs. The resulting implications for the plausibility of the evolutionary link between the main hot DA population and their proposed precursors, the H-rich central stars of planetary nebulae, need to be investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.