Abstract

AbstractThis study aims to investigate the effect of the phase transition of CuMn1−xCrxO2 compound on the Jahn–Teller effect which in turn affects the optical, thermal, and thermoelectric power factor properties. The CuMn1−xCrxO2 samples were synthesized by a solid‐state reaction method. The ab initio computation was applied to evaluate the electronic and optical properties in order to confirm the experiment data. The appearance of the phase transition from crednerite CuMnO2 to delafossite CuCrO2 was confirmed by X‐ray diffraction (XRD) and the ab initio computation through displaying the mixed crednerite/delafossite phase; and, the existence of the Jahn–Teller effect was confirmed by the X‐ray photoelectron spectroscopy (XPS) technique exhibiting the occurrence of mixed‐state Mn3+/Mn4+ ions. The results obtained from XRD, XPS, and the ab initio computation implied the decrease of the Jahn–Teller behavior with increased x content under the influence of the phase transition from the crednerite phase to the delafossite phase of CuMn1−xCrxO2. Surprisingly, the Jahn–Teller distortion reduction caused an increase in the energy gap of the optical property, electrical resistivity, and activation energy in thermally activated band conduction. The effect suffered the specific heat behavior by being separated into two groups of crednerite and delafossite, and enhanced the small polaron behavior by increasing the activation energy of thermally activated band conduction. The phase transition reduced the results of thermal conductivity, thermopower, and thermoelectric power factor properties. In other words, the effect of the phase transition from the crednerite CuMnO2 phase to the delafossite CuCrO2 phase on CuMn1−xCrxO2 compound reduced the Jahn–Teller effect with increased Cr content which in turn caused changes in the optical, thermal, and thermoelectric power factor properties. The effect of the phase transition is advantageous for the improvement of material properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call