Abstract

The grain growth kinetics of two beta titanium alloys, Ti–4733 and Ti–5553 was studied over a temperature range of 850 °C–1000 °C. The more stable alloy i.e. Ti–4733, showed a smaller average grain size and slower growth rate compared to Ti–5553 at a same annealing condition. The results showed that the uniformity of grain size decreased initially dawn to a minimum and then increased with increasing temperature. The grain growth exponent (n) and activation energy (Q) were calculated and it was revealed that n is mainly affected by temperature and Q is generally influenced by time. The n value for Ti–4733 was found to be lower than that for Ti–5553 while a higher Q was calculated for Ti–4733. The lower n values and the higher Q were attributed to the solute drag effect and the high Mo content with low diffusivity in Ti matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call