Abstract

Milk alternative attracts more attention due to nutrition benefits, but the low solubility and the calcium deficiency of plant protein hinder the development of milk alternatives. Therefore, pH shifting was optimized to improve chickpea protein solubility and calcium fortification while ensuring good digestibility. The results showed that pH shifting reduced the particle size from 2197.67 ± 178.2 nm to 80.2 ± 2 nm, and increased the net ζ potential from −0.48 ± 0.24 to −21.27 ± 0.65 due to the unfolding of secondary protein structure, by which chickpea protein bring better solution stability. Additionally, the whiteness of the solution with chickpea protein increased. The calcium addition kept the solution stable with small particle size despite a slight increase. The microstructure of chickpea protein during digestion was well disrupted even with fortifying calcium. This study provides proof of the positive effect of pH shifting on chickpea protein stability and calcium fortification

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.