Abstract

The electrocatalytic oxidation of formic acid (HCOOH) and formate (HCOO−) to CO2 on platinum has been studied over a wide range of pH (0–12) by surface-enhanced infrared absorption spectroscopy (SEIRAS) coupled with cyclic voltammetry. The peak current of HCOOH/HCOO− oxidation exhibits a volcano-shaped pH dependence peaked at a pH close to the pKa of HCOOH (3.75). The experimental result is reasonably explained by a simple kinetic model that HCOO− oxidation is the dominant reaction route over the whole pH range. HCOOH is oxidized after being converted to HCOO− via the acid-base equilibrium. The ascending part of the volcano plot at pH<4 is ascribed mostly to the increase of the molar ratio of HCOO−, while the descending part at pH>4 is ascribed to the suppression of HCOO− oxidation by adsorbed OH or oxidation of the electrode surface. In acidic media, HCOOH is adsorbed on the electrode as formate with a bridge-bonded configuration. The bridge-bonded adsorbed formate is stable and suppresses HCOO− oxidation by blocking active site. However, the suppression is not fatal because bridge-bonded adsorbed formate enhances the oxidation of HCOO− at high potential by suppressing the adsorption of OH or surface oxidation. The complex cyclic voltammograms for HCOOH/HCOO− oxidation also can be well interpreted in terms of the simple kinetic model. The experimental results presented here serve as a generic example illustrating the importance of pH variations in catalytic proton-coupled electron transfer reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.