Abstract

Dolomite post-floatation waste has been proposed as an alternative material for the construction of separation barriers. The aim of this study was to determine the effect of the pH of leaching solutions on the stability of such barriers. The present research included the determination of selected physical and chemical properties of waste, i.e., density, grain composition, and filtration coefficient. Column tests of leaching by solutions of different pH values modeling varying environmental conditions were performed. Selected ions were determined in the eluates. Grain analyses were carried out for the column material after leaching to determine the changes in grain composition of dolomite due to washing with leaching solutions. The determined value of the filtration coefficient is 6.52 × 10−9 m∙s−1, which confirms the impermeability of the waste. The material is fine-grained, with a grain diameter of d ≤ 200 µm. During leaching, a decrease in the content of the analyzed ions and the diameter of grains and their movement down the barrier, resulting in its sealing, was observed. The central part of all columns showed more grains with a diameter of 7 μm, which is probably due to secondary precipitation of CaSO4. Irrespective of the initial pH of the leaching solution, the reaction of all eluates obtained was slightly alkaline (pH 7.52–8.20). Dolomite post-floatation waste has properties that ensure the tightness and durability of the separation barrier, which, combined with its ability to alkalize solutions and the sealing process, ensures its effectiveness.

Highlights

  • One of the main sources of hazards to the soil and water environment is pollutants leached from the waste collected at landfills and transferred to leachate

  • The average content of basic heavy metals found in the ore, i.e., zinc and lead, is 5.136% and 0.814%, respectively

  • The primary protection against contaminants leached from the waste collected at landfills is isolation barriers

Read more

Summary

Introduction

One of the main sources of hazards to the soil and water environment is pollutants leached from the waste collected at landfills and transferred to leachate. The preferred raw material for its construction is natural clay minerals with a low filtration coefficient and high sorption capacity, enabling the capture of pollutants migrating with infiltrating waters. Both technologically and economically, is a fine-grained mineral industrial waste [3]. This way of using waste makes it possible to reduce the amount of waste deposited both on an ongoing basis as well as the amount deposited previously. The use of materials deposited in the environment as waste is in line with the principles of the currently preferred circular economy

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call