Abstract

In order to understand the mechanism of enzymatic activation of an antineoplastic agent ellipticine, we investigated the effect of pH on the efficiency of three model peroxidases (bovine lactoperoxidase, human myeloperoxidase and horseradish peroxidase) in oxidation of ellipticine and in formation ellipticine-DNA adducts. The formation of the major ellipticine metabolite, ellipticine dimer, in which two ellipticine residues are connected through nitrogenN6in the pyrrole ring of one of the ellipticine moieties and carbon C9 of the other ellipticine, and formation of four ellipticine-DNA adducts were analyzed. All three peroxidases oxidize ellipticine to dimer and form ellipticine-DNA adducts, but lactoperoxidase and myeloperoxidase were less efficient in these processes than horseradish peroxidase. More than one order of magnitude higher rates of formation of dimer and amounts of the DNA adducts were found upon horseradish peroxidase than in reactions with lactoperoxidase or myeloperoxidase. An acid pH optimum was found for the formation of ellipticine dimer (pH 6.4), while the highest binding of ellipticine activated by peroxidases to DNA was detectable at pH 8.4. Likewise, the highest binding of 5-(hydroxymethyl)ellipticine, a metabolite of ellipticine generated by cytochrome P450, to DNA was found at pH 8.4. The results presented here are a contribution to the explanation of the reaction mechanism of formation of the major deoxyguanosine adduct in DNA generated from ellipticinein vivoandin vitroby its activation with cytochromes P450 and peroxidases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.