Abstract

The physical state of phosphate glass (Pglass) has an influence on the non-isothermal crystallization behaviors of PET matrix in the PET/Pglass blends, which has been investigated via heating the glassy state and cooling the melt state of the blends at various scanning rates, respectively, by means of differential scanning calorimetry (DSC) technique. The kinetics models based on the Avrami and Mo equations were used to analyze the non-isothermal crystallization process. Furthermore, the activation energy of non-isothermal crystallization, according to Kissinger theory for heating process and Friedman theory for cooling process, has been evaluated. The results showed that the Pglass accelerated the non-isothermal cold crystallization rate of PET matrix due to its nucleation effect. In contrast, for the non-isothermal melt crystallization, the Pglass hindered the crystallization process due to its large melt viscosity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call