Abstract

Understanding interactions between permanently frozen soils and stream chemistry is important in predicting the effects of management, natural disturbance and changing perma- frost distribution on stream ecosystems and nutrient budgets in subarctic watersheds. Chemical measurements of groundwater, soil water and stream water were made in two watersheds in the taiga of interior Alaska. One watershed (HiP) had extensive permafrost and the other (LoP) had limited permafrost. Soil water collected within the rooting zone (0.3-0.5 m) in both watersheds was high in dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and dissolved inorganic nitrogen (DIN) but low in dissolved minerals (dominantly Ca, Mg and Na) and conductivity. The reverse was true for groundwater from springs and wells. Permafrost in the HiP basin prevented deep percolation of water and generated stormflows rich in DOC. The presence of permafrost in HiP resulted in higher fluxes of DOC, DON and DIN into stream water from upland soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call