Abstract

Increased body temperature is thought to be an important component of the higher perception of exertion that is a feature of fatigue during exercise in the heat but a causal relationship has yet to be demonstrated. We have investigated the effect of passive heating on the perception of exertion during a standard bout of exercise and also assessed the effect of cooling the head on compensating for the increased body temperature on the feelings of exertion. Ten male subjects performed a 14-min cycling exercise [average power approximately 63% of maximum power output ( W(max))] at an ambient temperature of 35 degrees C at resting rectal temperature [mean (SD): 37.49 (0.27) degrees C; control (CON) trial] on one occasion, and after sitting in a sauna to raise rectal temperature [mean (SD): 38.95(0.13) degrees C; sauna (SAU) trial]. During the exercise, subjects reported their ratings of overall perceived exertion (RPE), perceived exertion of the legs (RPE(legs)) and thermal comfort (TC). A blood sample was collected by the end of the exercise for determination of plasma glucose, lactate and prolactin and haematocrit. RPE values were significantly elevated after passive heating [mean (SE): 14.5 (0.7) units in CON and 17.2 (0.5) units in SAU, at the end of exercise; P<0.001] as were the RPE(legs) ( P<0.01), while ratings of TC were similar in CON and SAU trials. Passive heating increased blood glucose ( P<0.05) but had no effect on lactate at the end of the exercise. Plasma prolactin was markedly elevated as a result of the sauna exposure [mean (SE): 1598 (152) versus 225 (31) mU l(-1) in SAU and CON trials, respectively; P<0.001]. Six of the subjects repeated the two trials but with the face cooled during exercise (trials CON(FAN) and SAU(FAN)) that was achieved by combining face fanning and spraying the face with a mist of cooled water. Face cooling decreased RPE values after sauna to a point that no differences between the two conditions existed. RPE(legs) scores and heart rate, however, remained higher in SAU(FAN) compared with CON(FAN) ( P<0.05). We conclude that hyperthermia is a causative element of the increased perception of exertion during submaximal exercise in the heat and that the effect of increased core temperature on the feelings of exertion is modulated by face cooling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.