Abstract

An investigation was made to determine the effect of particulate loading on the elastic, tensile, compressive and fracture properties of Al2O3/Al metal-matrix composites fabricated by a pressureless-liquid-metal-infiltration process. The elastic modulus was found to be strongly affected by the reinforcement content, falling within the Hashin-Shtrikman bounds. The Young's modulus of the most highly loaded composite was 170 GPa; compare with 65 GPa for the unreinforced alloy. The strength systematically increased with loading, and the rate of increase also increased with loading. The measured yield strengths were nominally the same in both tension and compression; however, the composites possessed far greater ultimate strengths and strains-to-failure in compression than in tension. At 52 vol % reinforcement, yield strengths in tension and compression of 491 and 440 MPa, respectively, were measured, whereas the associated ultimate strengths were 531 and 1035 MPa, respectively. In tension, the yield and ultimate strengths of the base alloy were found to be 170 and 268 MPa, respectively. The composites displayed a nearly constant fracture toughness for all particulate loadings, with values approaching 20 MPa m1/2 compared to a value of 29 MPa m1/2 for the base alloy. Using fractography, the tensile-failure mechanism was characterized as transgranular fracture of the Al2O3 particles followed by ductile rupture of the Al-alloy matrix, with no debonding at the matrix/reinforcement interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.