Abstract

Olivine-structured LiFe0.97Ni0.03PO4/C/Ag nanomaterials of varying dispersibility are prepared by using sol–gel synthesis with subsequent milling. The materials are certified using X-ray diffraction analysis, scanning electron microscopy, low-temperature nitrogen adsorption, and electrochemical testing under the lithium-ion battery operating conditions. The LiFe0.97Ni0.03PO4/C/Ag cathode material primary particles’ size was shown to decrease, under the intensifying of ball-milling, from 42 to 31 nm, while the material’s specific surface area increased from 48 to 65 m2/g. The discharge capacity, under slow charging–discharging (C/8), approached a theoretical one for all materials under study. It was found that under fast charging–discharging (6 C and 30 C) the discharge capacity is inversely proportional to the particles’ mean size. The discharge capacity under the 6 С current came to 75, 94, 97, and 106 mA h/g for the initial material and that milled at a rotation velocity of 300, 500, and 700 rpm, respectively. An increase in the lithium diffusion coefficient upon the samples’ intense milling is noted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.