Abstract

Particle shape driven segregation in particulate mixtures has received limited attention in the literature either experimentally or via simulation. This study investigates the shape driven segregation which occurs during the process of heap formation and evaluates the ability of different Discrete Element Method (DEM) simulation approaches to predict the effect. It shows experimentally that the difference in particle shape can drive segregation in a binary mixture and that this segregation can be predicted by DEM models which resolve the particle shape. In this case shape is resolved via a clumped sphere approach. Importantly, the work also demonstrates that simpler models using spherical particles, with rolling friction calibrated to reproduce the experimental angle of repose, tend to underestimate the segregation tendency. The system studied was a binary mixture of irregular shaped particles, a typical spray dried detergent powder and a granulated detergent additive; particle shapes were obtained using X-ray microtomography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.