Abstract

Legislative restriction on effluent disposal has resulted in an increase in the environmental costs of chemical milling and replacement methods are being sought. Abrasive water jet cutting (AWJ) is a mature process that is employed to through cut materials that are difficult to process by more conventional methods and the process is also being developed for controlled depth milling (CDM) to produce three-dimensional features which in the past might have been produced by chemical or etching processes. A major problem to be solved when using AWJ as a CDM technique is that of tolerance on depth, surface waviness and surface roughness of the milled area. In the current work, the effects of milling parameters on the surface characteristics are investigated when milling a titanium alloy (Ti6Al4V) with different abrasives, namely white and brown aluminium oxide, garnet, glass beads and steel shot. It has been demonstrated that the ratio between the hardness of the workpiece and the abrasive is more important than particle shape. Material removal rate and surface roughness increased when particle hardness is increased. Shape factor and particle hardness have no significant effect on surface waviness. For the abrasives investigated; traverse speed is shown to govern the operative mechanism of material removal and thus the material removal rate. It is also shown that the surface waviness can be reduced as the traverse speed is increased whilst, the surface roughness is not strongly dependent on traverse speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.