Abstract

In this research, a simple quasi 3D hyperbolic shear deformation model is employed for bending and dynamic behavior of functionally graded (FG) plates resting on visco-Pasternak foundations. The important feature of this theory is that, it includes the thickness stretching effect with considering only 4 unknowns, which less than what is used in the First Order Shear Deformation (FSDT) theory. The visco-Pasternak\'s foundation is taken into account by adding the influence of damping to the usual foundation model which characterized by the linear Winkler\'s modulus and Pasternak\'s foundation modulus. The equations of motion for thick FG plates are obtained in the Hamilton principle. Analytical solutions for the bending and dynamic analysis are determined for simply supported plates resting on visco-Pasternak foundations. Some numerical results are presented to indicate the effects of material index, elastic foundation type, and damping coefficient of the foundation, on the bending and dynamic behavior of rectangular FG plates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.