Abstract
The energy offset between the electrode Fermi level and organic semiconductor transport levels is a key parameter controlling the charge injection barrier and hence efficiency of organic electronic devices. Here, we systematically explore the effect of in situ oxygen exposure on energetics in n-type conjugated polymer P(NDI2OD-T2) films. The analysis reveals that an interfacial potential step is introduced for a series of P(NDI2OD-T2) electrode contacts, causing a nearly constant downshift of the vacuum level, while the ionization energies versus vacuum level remain constant. These findings are attributed to the establishment of a so-called double-dipole step via motion of charged molecules and will modify the charge injection barriers at electrode contact. We further demonstrate that the same behavior occurs when oxygen interacts with p-type polymer TQ1 films, indicating it is possible to be a universal effect for organic semiconductors.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.