Abstract

Mature periodontal tissues from adult-mouse first mandibular molars were cultured in a continuous-flow organ-culture system which allowed the regulation of both ascorbic acid concentration and pO(2) (oxygen partial pressure). Protein synthesis was measured by analysing the incorporation of [(3)H]proline into collagenous and non-collagenous proteins during the last 24h of a 2-day culture. At low pO(2) [16.0kPa (approx. 120mmHg)] approx. 60% of protein-incorporated [(3)H]proline was found in collagenous proteins. However, it was evident that this collagen was considerably underhydroxylated. At high pO(2) [56.0kPa (approx. 420mmHg)], both the amount of collagen deposited in the tissues and the degree of hydroxylation were increased considerably. In contrast, no significant effect on non-collagenous protein was observed. Tissues cultured at low pO(2) for the first 48h were unable to respond to a subsequent increase in pO(2) during the last 24h. Analysis of pepsin-solubilized collagen alpha-chains labelled with [(14)C]glycine demonstrated the synthesis of both type-I and type-III collagens by explants cultured for 48h at high pO(2). Type-III collagen comprised 20-30% of the radioactivity in alpha-chains in both the periodontal ligament and the tissues of the alveolar process. The pattern of protein synthesis in the alveolar tissues at high pO(2) was similar to that observed in these tissues in vivo. However, in the cultured periodontal ligament the proportions of non-collagenous proteins and type-III collagens were increased in comparison with the tissue in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call