Abstract

We have studied the effect of oxygen on the time-dependent bifurcations of transient oscillations in the Belousov-Zhabotinsky oscillating chemical reaction in a closed system. Experiments show that oscillations disappear through different bifurcations depending on the oxygen concentration in gas phase above the reaction solution. Oscillations disappear through the time-delayed Hopf bifurcation at low oxygen concentrations, whereas at high oxygen concentrations they disappear through the time-dependent SNIPER (saddle-node infinite period) bifurcation. We propose a kinetic scheme that describes the effects observed in experiments. Good agreement between the experimental data and simulations is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.