Abstract

The notion of equilibrium soot nanostructure was introduced by Hurt et al., who argued that the peculiar turbostratic carbon structure is an equilibrium arrangement of lamellar, graphene-like molecules. It was proposed that the typical, onion-like internal structure of primary soot particles can be satisfactorily described by thermodynamic principles. There are two main objectives of this paper. First, the effects of oxidation pressures above atmospheric pressure on soot nanostructure are investigated experimentally. The analyzed soot was generated in premixed flames of liquid fuels: n-dodecane, m-xylene and n-butanol and further oxidized in a thermogravimetric analyzer under atmospheric, 10atm and 40atm pressures. Nanostructure is described by utilizing high-resolution transmission electron microscopy and recently developed image analysis techniques. Second, empirical observations are compared against behavior that is semi-quantitatively predicted by the thermodynamic model. The utilization of the novel analysis technique made direct comparison between observed and computed properties possible. Reasonable consistency was found between experimental and computational results. The results suggest that the known thermodynamic model can be used to predict equilibrium structure even when soot is oxidized under pressurized conditions. Since diesel and jet engines operate at elevated pressures, the conclusions drawn in this paper may find their use in predicting soot nanostructure in the limiting case of equilibrium conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.