Abstract

Recent data highlight the potential of bumetanide as a treatment for neonatal seizures and autism, as it facilitates the excitatory to inhibitory switch in gamma-aminobutyric acid signalling. This study examines the extent of blood-brain barrier (BBB) permeation of bumetanide, a key determinant of the efficacy of centrally acting drugs. Furthermore, the impact of efflux transporter organic anion transporter 3 (oat3) inhibition on bumetanide pharmacokinetics was investigated. Bumetanide levels in extracellular fluid (ECF) and plasma in the presence and absence of oat3 inhibitor probenecid were monitored using integrated microdialysis. Following a bumetanide bolus/continuous infusion of 10 mg/kg and 6 mg/kg/h, bumetanide was detected in hippocampal ECF at the estimated concentration of 131 ± 55 ng/ml. Plasma bumetanide levels were ∼20 mg/l at steady state. Coadministration of probenecid resulted in an increase in bumetanide levels in both ECF and plasma, indicating that oat3 inhibition influences the pharmacokinetics of bumetanide primarily in the periphery. Although bumetanide reached detectable levels in hippocampal ECF, bumetanide concentration in ECF was low relative to systemic concentration. Oat3 inhibition by probenecid resulted in increased bumetanide concentrations in brain and plasma. As an acute treatment in neonatal seizures, the bumetanide/probenecid combination may hold therapeutic potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.