Abstract

The aim of this study was to investigate the effect of orexin B (OXB) on progesterone (P4) and androstenedione (A4) secretion by porcine endometrial and myometrial tissue explants and on the expression of key steroidogenic proteins and enzymes involved in steroid production. The hormones secretion and the expression of steroidogenic acute regulatory protein (StAR), P450 side-chain cleavage enzyme (CYP11A1), and 3β-hydroxysteroid dehydrogenase (HSD3B1) were analyzed on days 10 to 11, 12 to 13, 15 to 16, and 27 to 28 of pregnancy and during the luteal phase of the estrous cycle (days 10 to 11). Endometrial and myometrial explants were cultured in vitro in the presence of OXB (1, 10, or 100 nM) and OXB (1, 10, or 100 nM) with 1 µM of JNJ (OX2R antagonist). Gene expression was examined by real-time PCR, and steroid secretion was determined by radioimmunoassay. Orexin B modulated StAR, CYP11A1, HSD3B1 mRNA content depending on the type of uterine tissue, the applied OXB dose, and the stage of pregnancy or the estrous cycle (P < 0.05). Orexin B increased P4 secretion in all stages of early gestation (P < 0.05). Orexin B enhanced the release of A4 on days 12 to 13, 15 to 16, and 27 to 28 of gestation, whereas on days 10 to 11 of early pregnancy, A4 secretion decreased in the endometrium and increased in the myometrium (P < 0.05). These results indicate that OXB affects the expression of key steroidogenic regulators and the secretion of steroid hormones in the porcine uterus during early pregnancy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.