Abstract

5-Hydroxytryptophan (5-HTP), which is the rate-limiting precursor in serotonin (5-hydroxytryptamine (5-HT)) biosynthesis, is used as an oral supplement to enhance serotonin levels in humans. To evaluate its effects on serotonin levels and localization, 5-hydroxytryptophan was administered to Sprague–Dawley rats either orally or via intraperitoneal injection. 5-Hydroxytryptophan-immunoreactivity was co-localized with serotonin-immunoreactivity in the serotonergic dorsal raphe nucleus of control animals and this was not changed in animals given 5-hydroxytryptophan. Oral 5-HTP administration increased the intensity of both 5-HTP and serotonin immunoreactivity in raphe neurons. However, 5-HTP treatment also caused ectopic 5-hydroxytryptophan-immunoreactivity and serotonin-immunoreactivity in normally dopaminergic neurons of the substantia nigra par compacta. Serotonin-immunoreactivity was confined to neurons that also displayed amino acid decarboxylase immunoreactivity, but in a small percentage of substantia nigra neurons, serotonin immunoreactivity was not co-localized with tyrosine hydroxylase-immunoreactivity. The intensity of the immunoreactivity to serotonin and 5-hydroxytryptophan in the substantia nigra was maximal within 2 h of 5-hydroxytryptophan administration and returned to control levels by 24 h. This time course mirrored changes in HPLC measurements of 5-hydroxytryptophan, serotonin, and the metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the urine. 5-Hydroxytryptophan administration did not cause ectopic appearance of either serotonin or 5-hydroxytryptophan in the noradrenergic locus coeruleus. These results suggest that a single oral dose of 5-HTP increases the 5-HTP and serotonin content of serotonergic neurons and causes the transient ectopic appearance of serotonin in some normally non-serotonergic neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call