Abstract

In this study, well-crystallized TiO2 nanoparticles with average size of -20 nm were synthesized by hydrolysis of titania salt in aqueous medium. The effect of the optical properties of the obtained titania particles based thin films with different thickness on the photovoltaic performance of dye-sensitized solar cells were investigated. Differential thermal analysis/thermo-gravimetric analysis, scanning electron microscopy, transmission electron microscopy and X-ray diffraction were used to characterize the morphology, structure and crystal formation of the obtained samples. The optical properties such as reflectance and transmittance of the photoanodes with different thickness were systematically investigated. The reflectance property increased with increasing the film thickness, however, the transmittance property showed the opposite way. The improved scattering property with increasing the film thickness facilitated efficient utilization of solar spectrum, which was verified by incident photon-to-current conversion efficiency. The maximum energy conversion efficiency of 5.0% was achieved on photoelectrode film with 17.8 microm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.