Abstract

The activation of mitochondrial succinate dehydrogenase by various activators is a result of dissociation of oxaloacetate tightly bound to the nonactive enzyme. But, quantitative correlation between the effector concentrations and the active fraction of the enzyme was not at hand. In this study we measured the level of active succinate dehydrogenase equilibrated with a wide range of opposing effectors: oxaloacetate (1-500 muM) and activator (0.02-1.5 M NaBr). The results are compatible with a model assuming two stable forms of the enzyme: a nonactive enzyme-oxaloacetate complex and an active enzyme free of oxaloacetate. The active form is stabilized by binding two Br- and one H+. The rate of activation (ka) and exchange between enzyme bound and free oxaloacetate k(ex) were measured. Both ka and kex are hyperbolically dependent on Br- concentration but differ in magnitude and pH dependence. kex at infinite Br- concentration is pH dependent but ka is not. The two reactions, activation and exchange, also differ in their activation energy bein 32 and 21.5 kcal/mol, respectively. It is concluded that, in the course of activation, Br- interacts at two distinct steps. First to produce a ternary, nonactive [enzyme-oxaloacetate-Br-] complex. From this complex, oxaloacetate dissociates and the oxaloacetate-free enzyme assumes its active form. Finally, the active enzyme is stabilized by binding another Br-. The rate-limiting step in deactivation is binding of oxaloacetate to active enzyme. The complex formed undergoes a very rapid transformation to the stable nonactive form. This pathway, under certain conditions, can reverse its direction and contribute to the overall rate of activation. It is suggested that the equilibrium between the two stable forms of the enzyme can be reached by two parallel pathways, each contributing independently to the observed rate of activation, while the final equilibrium is determined by the free energy between the products and the reactants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.