Abstract

AbstractNanostructured zinc titanate (NZT) was synthesized in high yield via a one-step and template-free sol-gel route. The prepared nanocomposite exhibited good size uniformity and regularity. The enhanced photocatalytic activity of the NZT was evaluated in the degradation and mineralization of Indocorn Brilliant Red (M5B) under metal halide lamp irradiation. The effects of different parameters such as pH of the solution, and initial dye concentration on photodegradation of M5B were analyzed. The degradation of M5B follows pseudo-first order kinetics according to the Langmuir-Hinshelwood model. The experimental results showed that the initial concentration of azo dye in the dye mixture greatly affected the degradation efficiency. At M5B concentrations of 10 mg/L, the optimum conditions for the highest degradation efficiency (94%) of azo dye were a photocatalyst dosage of 0.01 g/L and an initial solution pH of 9. This study provided new insight into the design and preparation of nanomaterial demonstrated an excellent ability to remove organic pollutants in wastewater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.