Abstract

BackgroundAmerican-style football (ASF) athletes are at risk for cardiovascular disease (CVD) and exhibit elevated levels of serum neurofilament light (Nf-L), a biomarker of axonal injury that is associated with repetitive head impact exposure over the course of a season of competition. Supplementation with the w-3 fatty acid (FA) docosahexaenoic acid (DHA) attenuates serum Nf-L elevations and improves aspects of CVD, such as the omega-3 index (O3I). However, the effect of combining the w-3 FA eicosapentaenoic acid (EPA) and docosapentaenoic acid (DPA) with DHA on, specifically, serum Nf-L in ASF athletes is unknown. Therefore, this study assessed the effect of supplemental w-3 FA (EPA+DPA+DHA) on serum Nf-L, plasma w-3 FAs, the O3I, and surrogate markers of inflammation over the course of a season.MethodsA multi-site, non-randomized design, utilizing two American football teams was employed. One team (n = 3 1) received supplementation with a highly bioavailablew-3 FA formulation (2000mg DHA, 560mg EPA, 320mg DPA, Mindset®, Struct Nutrition, Missoula, MT) during pre-season and throughout the regular season, while the second team served as the control (n = 35) and did not undergo supplementation. Blood was sampled at specific times throughout pre- and regular season coincident w ith changes in intensity, physical contact, and changes in the incidence and severity of head impacts. Group differences were determined via a mixed-model between-within subjects ANOVA. Effect sizes were calculated using Cohen’s dfor all between-group differences. Significance was set a priori at p< .05.ResultsCompared to the control group, ASF athletes in the treatment group experienced large increases in plasma EPA (p < .001, d = 1.71) and DHA (p < .001, d = 2.10) which contributed to increases in the O3I (p < .001, d = 2.16) and the EPA:AA ratio (p = .001, d = 0.83) and a reduction in the w-6: w-3 ratio (p < .001, d = 1.80). w-3 FA supplementation attenuated elevations in Nf-L (p = .024). The control group experienced a significant increase in Nf-L compared to baseline at several measurement time points (T2, T3, and T4 [p range < .001 – .005, drange = 0.59-0.85]).ConclusionsThese findings suggest a cardio- and neuroprotective effect of combined EPA+DPA+DHA w-3 FA supplementation in American-style football athletes.Trial registrationThis trial was registered with the ISRCTN registry (ISRCTN90306741).

Highlights

  • American-style football (ASF) athletes are at risk for cardiovascular disease (CVD) and exhibit elevated levels of serum neurofilament light (Nf-L), a biomarker of axonal injury that is associated with repetitive head impact exposure over the course of a season of competition

  • Results ω-3 supplementation and plasma fatty acids Baseline (T1) and post-season (T6) eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), docosapentaenoic acid (DPA), AA data based on percentage of total plasma fatty acids are presented in Fig. 3 A, B, C, and D, respectively

  • At T1, plasma DHA, EPA and AA were similar between groups; plasma DPA was higher in the control group (p = .049)

Read more

Summary

Introduction

American-style football (ASF) athletes are at risk for cardiovascular disease (CVD) and exhibit elevated levels of serum neurofilament light (Nf-L), a biomarker of axonal injury that is associated with repetitive head impact exposure over the course of a season of competition. American-style football (ASF) athletes exhibit an increased risk of developing cardiovascular disease (CVD) [1]. A large percentage of ASF athletes, independent of body mass, have hypertension [3] and dyslipidemia [6], and sport-participation at the elite level is a stimulus for oxidative stress and inflammation [7], all contributors to CVD. Despite the high incidence of clinically discernible head injuries (i.e., concussions), routine exposure to repetitive subconcussive head impacts (RHI) is another potentially harmful consequence of ASF participation [8]. Sport-related RHI, in the absence of overt functional disturbances or clinically diagnosed injuries, results in quantifiable structural [9, 10, 12, 13] and functional changes [14,15,16] within the brain

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call