Abstract

Abstract Factors affecting the flow properties of EPDM compounds have been studied and the findings of the study applied to the injection molding of these compounds. The level of oil and of black were found to change the flow properties of EPDM compounds. Higher levels of oil decreased the compound viscosity while higher levels of black increased the compound viscosity. The viscosity of the oil influenced compound viscosities. Compounds made with the more viscous (at 210° F) oil had slightly higher viscosities. However, changing from an aromatic to a naphthenic oil of similar viscosity had little effect on the compound viscosity. Compounds made from two different polymers of similar Mooney viscosity were found to have widely divergent flow behavior at high shear rates. Injection molding of EPDM compounds was studied with a molding assembly which had a capillary rheometer as barrel and plunger. Injection pressure data from the molding experiments was found to parallel closely the rheological data. An analysis of the pressure drops in passing through different parts of the mold assembly was made. The total calculated pressure drop agreed closely with the measured pressure drop. The viscous generation of heat was found to be proportional to pressure drop, and an equation is presented which relates the temperature increase to the pressure drop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.