Abstract

The effect of the nutation angle on the flow inside a precessing cylinder is experimentally explored and compared with numerical simulations. The focus is laid on the typical breakdown of the directly forced m = 1 Kelvin mode for increasing precession ratio (Poincaré number) and the accompanying transition between laminar and turbulent flows. Compared to the reference case with a 90° nutation angle, prograde rotation leads to an earlier breakdown, while in the retrograde case, the forced mode continues to exist also for higher Poincaré numbers. Depending largely on the occurrence and intensity of an axisymmetric double-roll mode, a kinematic dynamo study reveals a sensitive dependence of the self-excitation condition on the nutation angle and the Poincaré number. Optimal dynamo conditions are found for 90° angle which, however, might shift to slightly retrograde precession for higher Reynolds numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.