Abstract

Turbulent channel flow simulations are performed using second- and fourth-order finite difference codes. A systematic comparison of the large-eddy simulation (LES) results for different grid resolutions, finite difference schemes, and several turbulence closure models is performed. The use of explicit filtering to reduce numerical errors is compared to results from the traditional LES approach. Filter functions that are smooth in spectral space are used, as the findings of this investigation are intended for application of LES to complex domains. Explicit filtering introduces resolved subfilter-scale (RSFS) as well as subgrid-scale (SGS) turbulence terms. The former can be theoretically reconstructed; the latter must be modelled. The dynamic Smagorinsky model, the dynamic mixed model, and the new dynamic reconstruction model are all studied. It is found that for explicit filtering, increasing the reconstruction levels for the RSFS stress improves the mean velocity as well as the turbulence intensities. When compared to LES without explicit filtering, the difference in the mean velocity profiles is not large; however the turbulence intensities are improved for the explicit filtering case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call