Abstract

Weekends and holidays lead to gaps in daily financial data. Standard models ignore these irregularities. Because this issue is particularly important for persistent time series, we focus on volatility modelling, specifically modelling of realized volatility. We suggest a simple way of adjusting volatility models, which we illustrate on an AR(1) model and the HAR model of Corsi (2009). We investigate daily series of realized volatilities for 21 equity indices around the world, covering more than 15 years, and we find that our extension improves the volatility models—both in sample and out of sample. For HAR models and for consecutive trading days, the mean squared error decreased by 2.34% in average and for the QLIKE loss function by 1.41%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.