Abstract

Bovine heart cytochrome c oxidase was reconstituted in phospholipid vesicles, and the effect of different non-esterified fatty acids (NEFA) was studied on its proton pump and on the proton permeability of the vesicles. Neither parameter appeared to be affected by concentrations of NEFA known to uncouple oxidative phosphorylation (10 microM). Also the permeability for K+ was not affected by them. The fatty acids caused an increase in the rate of electron transfer in the absence, but not in the presence, of uncoupler and/or valinomycin [diminution of the respiratory-control index (RCI)]. The RCI of 8.7-7.5 was decreased to about 4.5 in the presence of 0.27-10 microM-NEFA. Oleic acid was not effective at the above concentrations. Subunit III-depleted enzyme preparations gave vesicles with an RCI of about 5.5, which was decreased to 4.5 in the presence of NEFA. With both native and subunit III-depleted oxidase the RCI was never decreased to the value of 1 by NEFA, as happens with classical protonophores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.