Abstract

Exposure to high-intensity noise causes little, if any, reduction in vestibular function in normal animals as shown by short-latency vestibular evoked potentials (VsEPs). To investigate the effect of noise exposure on VsEPs following fenestration of the horizontal semicircular canal. Psammomys obesus (fat sand rat) underwent labyrinthectomy in 1 ear, while the lateral semicircular canal in the other ear was fenestrated. Control VsEPs to linear acceleration (approximately 3g; rise time, approximately 1-2 milliseconds) were recorded immediately after the operation. The experimental group animals were then subjected to loud white noise (113-dB sound pressure level) for 1 hour. Immediately after the noise exposure in the experimental group animals, VsEPs were once more recorded. The VsEPs in the experimental group animals were significantly reduced immediately following the noise exposure, while there was no change in the recordings from the control group animals (fenestrated but not noise exposed; noise exposed but not fenestrated), even though the noise exposure induced a mean 47-dB threshold elevation of the auditory brainstem response. The presence of the fenestration caused the vestibular end organs to become vulnerable to noise exposure. The fenestration may create a pathway enabling pressure release through the vestibular end organs during noise exposure, thus increasing the possibility of damage to the vestibular end organs. This did not occur in the intact, nonfenestrated animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.