Abstract

Nitrobenzene, although widely used in industry, is a highly toxic environmental pollutant. To evaluate the toxicity of nitrobenzene to tobacco seedlings, seedlings were exposed to varying concentrations of nitrobenzene (0-100 mg/L) for 24 h. The contents of reactive oxygen species (hydrogen peroxide [H(2)O(2)] and superoxide anion [O2(-)]) and the activities of antioxidative enzymes (superoxide dismutase [SOD], guaiacol peroxidase [POD], and catalase [CAT]) were measured in leaf cells. Damage to DNA was assessed by single-cell gel electrophoresis (comet assay). Compared with the control, the contents of H(2) O(2) increased significantly with nitrobenzene concentrations ranging from 5 to 100 mg/L. Activity of SOD was induced by 50 to 100 mg/L of nitrobenzene but not by 10 to 25 mg/L. Activity of POD was stimulated by nitrobenzene at 10 to 50 mg/L but inhibited at 100 mg/L. Activity of CAT was increased significantly only by 100 mg/L. Lipid peroxidation increased with 50 to 100 mg/L, which indicated that nitrobenzene induced oxidative stress in tobacco leaf cells. Comet assay of the leaf cells showed a significant enhancement of the head DNA (H-DNA), tail DNA (T-DNA), and olive tail moment (OTM) with increasing doses of nitrobenzene. The values of H-DNA, T-DNA, and OTM exhibited significant differences from the control when stress concentrations were higher than 10 mg/L. The results indicated that nitrobenzene caused oxidative stress, which may be one of the mechanisms through which nitrobenzene induces DNA damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.