Abstract

Treatment of chronic wounds is becoming increasingly difficult due to antibiotic resistance. Complex natural products with antimicrobial activity, such as honey, are now under the spotlight as alternative treatments to antibiotics. Several studies have shown honey to have broad-spectrum antibacterial activity at concentrations present in honey dressings, and resistance to honey has not been attainable in the laboratory. However not all honeys are the same and few studies have used honey that is well defined both in geographic and chemical terms. Here we have used a range of concentrations of clover honey and a suite of manuka and kanuka honeys from known geographical locations, and for which the floral source and concentration of methylglyoxal and hydrogen peroxide potential were defined, to determine their effect on growth and cellular morphology of four bacteria: Bacillus subtilis, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. While the general trend in effectiveness of growth inhibition was manuka>manuka-kanuka blend>kanuka>clover, the honeys had varying and diverse effects on the growth and cellular morphology of each bacterium, and each organism had a unique response profile to these honeys. P. aeruginosa showed a markedly different pattern of growth inhibition to the other three organisms when treated with sub-inhibitory concentrations of honey, being equally sensitive to all honeys, including clover, and the least sensitive to honey overall. While hydrogen peroxide potential contributed to the antibacterial activity of the manuka and kanuka honeys, it was never essential for complete growth inhibition. Cell morphology analysis also showed a varied and diverse set of responses to the honeys that included cell length changes, cell lysis, and alterations to DNA appearance. These changes are likely to reflect the different regulatory circuits of the organisms that are activated by the stress of honey treatment.

Highlights

  • Wounds of the skin and mucosal layers can be generated by accidental trauma, surgery, maceration, inflammation and some cosmetic procedures

  • There is growing evidence that chronic wounds result from a complex interplay of host immunity and bacterial infection, and that infection can be due to a consortia of different species of bacteria embedded in a biofilm matrix that is highly resistant to antimicrobial therapy

  • With the dearth of development of new classes of antibiotics to treat infections caused by resistant organisms, honey is increasingly valued for its broad-spectrum antibacterial activity and effectiveness as a treatment for chronic wound infections

Read more

Summary

Introduction

Wounds of the skin and mucosal layers can be generated by accidental trauma, surgery, maceration, inflammation and some cosmetic procedures (e.g. tattooing and piercing). In some instances wounds can become infected, and in persons with impaired immunity or circulation, wounds can become non-healing, progressive and chronic. There is growing evidence that chronic wounds result from a complex interplay of host immunity and bacterial infection, and that infection can be due to a consortia of different species of bacteria embedded in a biofilm matrix that is highly resistant to antimicrobial therapy [1]. Planktonic bacteria are important in chronic and acute wounds, and their release from biofilms has been proposed to maintain the inflammatory response within the wound [2,3], as well as allowing seeding to other areas. The emergence of bacterial pathogens resistant to multiple antibiotics has exacerbated the problems associated with treating infected wounds, in the hospital setting [4,5]. There is an increasing need for new approaches to treat these infections, which are estimated to affect 6.5 million patients and to cost US$25 billion annually, with significant increases expected in the future [6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call