Abstract
The crystal structures, stability, mechanical properties and electronic structures of Nb-free and Nb-doped Ti-Al intermetallic compounds were investigated via first-principles calculations. Seven components and eleven crystal configurations were considered based on the phase diagram. The calculated results demonstrate that hP8-Ti3Al, tP4-TiAl, tP32-Ti3Al5, tI24-TiAl2, tI16-Ti5Al11, tI24-Ti2Al5, and tI32-TiAl3 are the most stable phases. Mechanical properties were estimated with the calculated elastic constants, as well as the bulk modulus, shear modulus, Young's modulus, Poisson's ratio and Pugh's ratio following the Voigt-Reuss-Hill scheme. As the Al content increases, the mechanical strength increases but the ductility decreases in the Ti-Al compounds. This results from the enhanced covalent bond formed by the continuously enhanced Al-sp hybrid orbitals and Ti-3d orbitals. Nb doping (~5 at.% in this study) keeps the thermodynamical and mechanical stability for the Ti-Al compounds, which exhibit slightly higher bulk modulus and better ductility. This is attributed to the fact that the Nb 4d orbitals locate near the Fermi level and interact with the Ti-3d and Al-3p orbitals, improving the metallic bonds based on the electronic structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.